Robust nonlinear motion control of a helicopter
نویسندگان
چکیده
We consider the problem of controlling the vertical motion of a nonlinear model of a helicopter, while stabilizing the lateral and horizontal position and maintaining a constant attitude. The reference to be tracked is given by a sum of a constant and a fixed number of sinusoidal signals, and it is assumed not to be available to the controller. This represents a possible situation in which the controller is required to synchronize the vehicle motion with that of an oscillating platform, such as the deck of a ship in high seas. We design a nonlinear controller which combines recent results on nonlinear adaptive output regulations and robust stabilization of systems in feedforward form by means of saturated controls. Simulation results show the effectiveness of the method and its ability to cope with uncertainties on the plant and actuator model.
منابع مشابه
Intelligent Auto pilot Design for a Nonlinear Model of an Autonomous Helicopter by Adaptive Emotional Approach
There is a growing interest in the modeling and control of model helicopters using nonlinear dynamic models and nonlinear control. Application of a new intelligent control approach called Brain Emotional Learning Based Intelligent Controller (BELBIC) to design autopilot for an autonomous helicopter is addressed in this paper. This controller is applied to a nonlinear model of a helicopter. This...
متن کاملControl of Quadrotor Using Sliding Mode Disturbance Observer and Nonlinear Hâ
In this paper, a nonlinear model of the underactuated six degrees of freedom (6 DOF) quadrotor helicopter was derived based on the Newton-Euler formalism. A new nonlinear robust control strategy was proposed to solve the stabilizing and path following problems in presence of external disturbances and parametric uncertainties. The proposed control structure consist of a sliding mode control base...
متن کاملRobust Hybrid Motion Force Control Algorithm for Robot Manipulators
In this paper we present a robust hybrid motion/force controller for rigid robot manipulators. The main contribution of this paper is that the proposed hybrid control system is able to accomplish motion objectives in free directions and force objectives in constrained directions under parametric uncertainty both in robot dynamics and stiffness constraint constant. Also, the given scheme is prov...
متن کاملRobust Control of a Quadrotor
In this paper, a robust tracking control method for automatic take-off and trajectory tracking of a quadrotor helicopter is presented. The designed controller includes two parts: a position controller and an attitude controller. The attitude controller is designed by using the sliding mode control (SMC) method to track the desired pitch and roll angles, which are the output of position controll...
متن کاملFinite Time Terminal Synergetic Controller for Nonlinear Helicopter Model
In this paper, an almost new control approach called terminal synergetic control which works based on user defined manifold is applied to a nonlinear helicopter model. Stability analysis is convestigated using Lyapunov stability theory. Synergetic controller is applied to this nonlinear fifth-order helicopter model to control height and angle. Simulation results showed that it has faster and sm...
متن کاملMPC with Nonlinear H-Infinity Control for Path Tracking of a Quad-Rotor Helicopter
Abstract: This paper presents a predictive and nonlinear robust control strategy to solve the path tracking problem for a quadrotor helicopter. The dynamic motion equations are obtained by the Lagrange-Euler formalism. The control structure is performed through a model-based predictive controller (MPC) to track the reference trajectory and a nonlinear H∞ controller to stabilize the rotational m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Automat. Contr.
دوره 48 شماره
صفحات -
تاریخ انتشار 2003